Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biomed Environ Sci ; 35(5): 412-418, 2022 May 20.
Article in English | MEDLINE | ID: covidwho-1893037

ABSTRACT

Taking the Chinese city of Xiamen as an example, simulation and quantitative analysis were performed on the transmissions of the Coronavirus Disease 2019 (COVID-19) and the influence of intervention combinations to assist policymakers in the preparation of targeted response measures. A machine learning model was built to estimate the effectiveness of interventions and simulate transmission in different scenarios. The comparison was conducted between simulated and real cases in Xiamen. A web interface with adjustable parameters, including choice of intervention measures, intervention weights, vaccination, and viral variants, was designed for users to run the simulation. The total case number was set as the outcome. The cumulative number was 4,614,641 without restrictions and 78 under the strictest intervention set. Simulation with the parameters closest to the real situation of the Xiamen outbreak was performed to verify the accuracy and reliability of the model. The simulation model generated a duration of 52 days before the daily cases dropped to zero and the final cumulative case number of 200, which were 25 more days and 36 fewer cases than the real situation, respectively. Targeted interventions could benefit the prevention and control of COVID-19 outbreak while safeguarding public health and mitigating impacts on people's livelihood.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , COVID-19/prevention & control , China/epidemiology , Humans , Machine Learning , Pandemics/prevention & control , Policy , Reproducibility of Results , SARS-CoV-2
2.
Infect Dis Poverty ; 10(1): 62, 2021 May 07.
Article in English | MEDLINE | ID: covidwho-1220178

ABSTRACT

BACKGROUND: A local coronavirus disease 2019 (COVID-19) case confirmed on June 11, 2020 triggered an outbreak in Beijing, China after 56 consecutive days without a newly confirmed case. Non-pharmaceutical interventions (NPIs) were used to contain the source in Xinfadi (XFD) market. To rapidly control the outbreak, both traditional and newly introduced NPIs including large-scale management of high-risk populations and expanded severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PCR-based screening in the general population were conducted in Beijing. We aimed to assess the effectiveness of the response to the COVID-19 outbreak in Beijing's XFD market and inform future response efforts of resurgence across regions. METHODS: A modified susceptible-exposed-infectious-recovered (SEIR) model was developed and applied to evaluate a range of different scenarios from the public health perspective. Two outcomes were measured: magnitude of transmission (i.e., number of cases in the outbreak) and endpoint of transmission (i.e., date of containment). The outcomes of scenario evaluations were presented relative to the reality case (i.e., 368 cases in 34 days) with 95% Confidence Interval (CI). RESULTS: Our results indicated that a 3 to 14 day delay in the identification of XFD as the infection source and initiation of NPIs would have caused a 3 to 28-fold increase in total case number (31-77 day delay in containment). A failure to implement the quarantine scheme employed in the XFD outbreak for defined key population would have caused a fivefold greater number of cases (73 day delay in containment). Similarly, failure to implement the quarantine plan executed in the XFD outbreak for close contacts would have caused twofold greater transmission (44 day delay in containment). Finally, failure to implement expanded nucleic acid screening in the general population would have yielded 1.6-fold greater transmission and a 32 day delay to containment. CONCLUSIONS: This study informs new evidence that in form the selection of NPI to use as countermeasures in response to a COVID-19 outbreak and optimal timing of their implementation. The evidence provided by this study should inform responses to future outbreaks of COVID-19 and future infectious disease outbreak preparedness efforts in China and elsewhere.


Subject(s)
COVID-19/epidemiology , Beijing/epidemiology , COVID-19/transmission , COVID-19 Testing , China/epidemiology , Epidemiological Monitoring , Humans , Models, Statistical , Pandemics , Quarantine , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL